# OU2/OU4 2021 Soil Sampling Work Plan

# Kerr-McGee Chemical Corp—Navassa Superfund Site Navassa, North Carolina EPA ID #NCD980557805





**Greenfield Environmental Multistate Trust, LLC** Trustee of the Multistate Environmental Response Trust

Prepared by

integr engineering p.c.

285 Century Place Suite 190 Louisville, CO 80027

May 19, 2021

## CONTENTS

| LIS | ST OF I        | FIGURES                                              | iv       |  |  |  |
|-----|----------------|------------------------------------------------------|----------|--|--|--|
| LI  | ST OF 7        | TABLES                                               | <b>v</b> |  |  |  |
| AC  | CRONY          | MS AND ABBREVIATIONS                                 | vi       |  |  |  |
| 1   | INTRODUCTION1- |                                                      |          |  |  |  |
|     | 1.1            | SITE OVERVIEW                                        | 1-1      |  |  |  |
|     | 1.2            | OU2 SAMPLING STRATEGY                                | 1-1      |  |  |  |
|     | 1.3            | OU4 SAMPLING STRATEGY                                | 1-3      |  |  |  |
|     |                | 1.3.1 Eastern Undeveloped Area                       | 1-3      |  |  |  |
|     |                | 1.3.2 Untreated Wood Storage Area                    | 1-4      |  |  |  |
|     |                | 1.3.3 Process Area                                   | 1-4      |  |  |  |
|     |                | 1.3.4 Pond Area                                      | 1-4      |  |  |  |
|     |                | 1.3.5 Area Within the Floodplain                     | 1-5      |  |  |  |
| 2   | FIELD          | D METHODS                                            | 2-1      |  |  |  |
|     | 2.1            | VEGETATION CLEARING                                  | 2-1      |  |  |  |
|     | 2.2            | SURVEYING                                            | 2-1      |  |  |  |
|     | 2.3            | SUBSURFACE DISCRETE SOIL SAMPLING (OU2)              |          |  |  |  |
|     | 2.4            | SURFACE 5-POINT COMPOSITE SOIL SAMPLING (OU4)        | 2-2      |  |  |  |
|     | 2.5            | SURFACE DISCRETE SOIL SAMPLING (OU4)                 | 2-2      |  |  |  |
|     | 2.6            | INCREMENTAL SAMPLING METHODOLOGY (ISM) SOIL SAMPLING |          |  |  |  |
|     |                |                                                      | 2-4      |  |  |  |
|     |                | 2.6.1 Sample Locations                               | 2-4      |  |  |  |
|     |                | 2.6.2 Sample Collection                              | 2-4      |  |  |  |
|     | 0.7            | 2.6.3 Laboratory Sample Aggregations and Subsampling | 2-5      |  |  |  |
|     | 2.7            | EQUIPMENT DECONTAMINATION                            | 2-5      |  |  |  |
|     | 2.8            | QUALITY CONTROL                                      | 2-5      |  |  |  |
|     | 2.9            | INVESTIGATION-DERIVED WASTE SAMPLING AND MANAGEMENT  | 2-6      |  |  |  |
| 3   | LABO           | DRATORY METHODS                                      | 3-1      |  |  |  |
| 4   | DATA           | A EVALUATION AND REPORTING                           | 4-1      |  |  |  |
|     | 4.1            | TOXICITY EQUIVALENT CALCULATIONS                     | 4-1      |  |  |  |
|     | 4.2            | REPORTING                                            | 4-1      |  |  |  |

ii

| 5 | IMPLEMENTATION SCHEDULE | .5-1 |
|---|-------------------------|------|
| 6 | REFERENCES              | .6-1 |

# LIST OF FIGURES

- Figure 1. Site Overview
- Figure 2. OU2 Sampling Locations
- Figure 3. OU4 Sampling Locations

# LIST OF TABLES

- Table 1.OU2 Subsurface Soil Sampling Locations
- Table 2.OU4 Surface Soil Sampling Locations for the Untreated Wood Storage Area and<br/>Eastern Undeveloped Area
- Table 3.OU4 Surface Soil Sampling Locations for the Area within the Floodplain
- Table 4.OU4 Surface Soil Sampling Locations for the Process Area and Pond Area
- Table 5.OU2 Proposed Laboratory Methods and Sample Summary
- Table 6.OU4 Proposed Laboratory Methods and Sample Summary
- Table 7.Soil Target Parameters, Analytical Methods, and Project Minimum Reporting<br/>Limits

# ACRONYMS AND ABBREVIATIONS

| BaP              | benzo[a]pyrene                                                       |
|------------------|----------------------------------------------------------------------|
| bgs              | below ground surface                                                 |
| CERCLA           | Comprehensive Environmental Response, Compensation and Liability Act |
| COC              | chemical of concern                                                  |
| EPA              | U.S. Environmental Protection Agency                                 |
| GPS              | global positioning system                                            |
| HHRA             | human health risk assessment                                         |
| Integral         | Integral Engineering, P.C.                                           |
| ISM              | incremental sampling methodology                                     |
| ITRC             | Interstate Technology and Regulatory Council                         |
| LSASD            | Laboratory Services and Applied Science Division                     |
| MS/MSD           | matrix spike/matrix spike duplicate                                  |
| Multistate Trust | Greenfield Environmental Multistate Trust LLC                        |
| NAD 83           | North American Datum of 1983                                         |
| NAVD 88          | North American Vertical Datum of 1988                                |
| NCDEQ            | North Carolina Department of Environmental Quality                   |
| OU               | operable unit                                                        |
| РАН              | polycyclic aromatic hydrocarbon                                      |
| РСР              | pentachlorophenol                                                    |
| ppt              | parts per trillion                                                   |
| QAPP             | quality assurance project plan                                       |
| RPF              | relative potency factor                                              |
| Site             | Kerr-McGee Chemical Corp.—Navassa Superfund site                     |
| SRI              | Supplemental Remedial Investigation                                  |
| SVOC             | semivolatile organic compound                                        |
| TCDD             | 2,3,7,8-tetrachlorodibenzo- <i>p</i> -dioxin                         |
| TEQ              | toxicity equivalence                                                 |
| VOC              | volatile organic compound                                            |

VSP Visual Sample Plan

vii

# **1 INTRODUCTION**

This Soil Sampling Work Plan (Work Plan) details the collection of additional soil data in Operable Units 2 and 4 (OU2 and OU4) of the Kerr-McGee Chemical Corp.—Navassa Superfund Site ("the Site"; U.S. Environmental Protection Agency [EPA] ID# NCD980557805) (Figure 1). Additional soil sampling is needed to support the evaluation of potential human health and ecological risk from exposure to soil chemicals of concern (COCs) as described in the March 10, 2021, *White Paper on Addressing Human Health and Ecological Risks from Exposures to Impacted Soil in OU2 and OU4* (Integral et al. 2021; hereafter referred to as the "Risk Strategy White Paper"). The soil sampling approach described in this Work Plan was put forth in the Risk Strategy White Paper, which was approved by the North Carolina Department of Environmental Quality (NCDEQ) on February 12, 2021, and by EPA on February 16, 2021. This Work Plan is being submitted by Integral Engineering, P.C. (Integral) on behalf of Greenfield Environmental Multistate Trust LLC, not individually but solely in its representative capacity as Trustee of the Multistate Environmental Response Trust (the Multistate Trust).

## 1.1 SITE OVERVIEW

The Site was formerly owned by the Kerr-McGee Chemical Corporation and was operated as a creosote-based wood treating facility from 1936 to 1974. Under the Comprehensive Environmental Response, Compensation and Liability Act, the Site has been divided into five OUs based on previous land uses and observed impacts (Figure 1). OU2 and OU4 are addressed in this Work Plan. OU2 includes portions of the Site that were previously used for treated and untreated wood storage between OU1 and OU4. OU4, as currently defined, includes all of the Process Area, all of the Pond Area, and part of the Untreated Wood Storage Area.

## 1.2 OU2 SAMPLING STRATEGY

As part of previous sampling, OU2 was divided into parcels of 0.25 acre or less to determine which parcels meet both the EPA no action criteria and the NCDEQ unrestricted use criteria under North Carolina General Statute § 143B-279.9(d)(1). Surface soil sampling (0–1 ft below ground surface [bgs]) conducted within OU2 in 2020 identified several 0.25-acre parcels with PAHs or dioxins/furans greater than the criterion established for unrestricted (residential) use. NCDEQ has previously indicated that there are sufficient data to meet the NCDEQ unrestricted use criteria for PAHs. However, the vertical extent of dioxins/furans contamination has not been established (Risk Strategy White Paper).

North Carolina's Guidelines for Assessment and Cleanup of Contaminated Sites (NCDEQ 2020) states:

- "Even if the site property is, and/or will be, designated as industrial-use only, the extent of contamination must be delineated to the unrestricted-use goals to identify where land use controls must be placed."
- "The unrestricted-use remediation goals referenced in this document (See Chapter 3.0) must be used as delineation endpoints for soil, groundwater, and surface water during the remedial investigation."

To collect sufficient data for the evaluation, sampling will be completed in OU2 to delineate the vertical extent of dioxins/furans in the 0.25-acre parcels where the 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) toxicity equivalence (TEQ) concentration in surface soils exceeds 50 part per trillion (ppt).

As summarized below, there are seven parcels that have surface soil TCDD TEQ concentrations that exceed 50 ppt (Figure 2). Each of the seven parcels has composite sampling data, and three of the seven have discrete sampling data.

| Parcel | Composite Sample<br>> 50 ppt | Discrete Samples<br>> 50 ppt |
|--------|------------------------------|------------------------------|
| CS-56  | Yes                          | 3 of 5 samples               |
| SB-148 | Yes                          | NA                           |
| RISB05 | Yes                          | NA                           |
| SS-115 | Yes                          | NA                           |
| SB-136 | Yes                          | NA                           |
| CS-66  | Yes                          | 0 of 6 samples               |
| CS-68  | Yes                          | 0 of 6 samples               |

Notes: NA = not analyzed

The following sampling approach was developed in consultation with EPA and NCDEQ to address the dioxin/furan data gap:

#### Parcels SB-148, RISB05, SS-115, SB-136, CS-66, and CS-68

- Subsurface discrete soil samples will be collected from 1–2 ft bgs and 2–3 ft bgs at the same five sample locations used in the previous investigation.
- The 1–2 ft bgs discrete samples will be analyzed for dioxins/furans and the 2–3 ft bgs discrete samples will be archived for a maximum of 6 months for potential future analysis.
- If any of the 1–2 ft bgs samples exceeds 50 ppt TCDD TEQ, the associated 2–3 ft bgs sample will be analyzed for dioxins/furans.

#### Parcel CS-56

- Subsurface discrete soil samples will be collected from 1–2 ft bgs and 2–3 ft bgs at each of the three discrete sample locations as the previous investigation where detected concentrations were greater than 50 ppt TCDD TEQ.
- The 1–2 ft bgs samples will be analyzed for dioxins/furans and the 2–3 ft bgs samples will be archived for a maximum of 6 months for potential future analysis.
- If any of the 1–2 ft bgs samples exceeds 50 ppt TCDD TEQ, the associated 2-3 ft bgs sample will be analyzed for dioxins/furans.

### 1.3 OU4 SAMPLING STRATEGY

The sampling approach for OU4 is designed to gather data needed to quantify human health and ecological risks due to exposure to OU4 surface soils. The approach divides OU4 into five subareas based on former and anticipated land use. Human health risks for the Process Area, the Pond Area, and the Untreated Wood Storage Areas (which are all or partially located within OU4) were previously evaluated in the human health risk assessment (HHRA) (EarthCon 2019a), which was approved by EPA and NCDEQ. Table 3-3 of the HHRA presents surface soil COCs for these areas and provides the basis for the chemicals selected for analysis described below. The sampling protocols for each subarea are detailed below.

### 1.3.1 Eastern Undeveloped Area

Review of aerial photos and available maps of former facility operations indicates that there were no significant activities related to the former wood treatment operations in the northeast corner of OU4 (Figure 1). This area of OU4 is referred to as the "eastern undeveloped area" for the purposes of this Work Plan (Figure 3). Sampling conducted in 2019 confirmed that concentrations of PAHs in soils are below risk-based thresholds along the current OU4 eastern boundary (EarthCon 2019b). Additional sampling will be conducted in the eastern undeveloped area along the boundary where past operations are known to have taken place (i.e., east of the Untreated Wood Storage Area and north of the decommissioning pond footprint) to determine if operations-related impacts extend into the eastern undeveloped area.

The sampling strategy will follow the approach taken during the 2019 sampling to delineate the Eastern Uplands boundary (EarthCon 2019c). A series of five-point composite samples will be collected, with each composite sample collected from a sampling area of approximately 50- by 250-ft. The samples collected in this area will be evaluated for PAHs, dioxins/furans and pentachlorophenol (PCP), consistent with previous sampling performed in OU1/OU2. Because this area borders the Untreated Wood Storage Area and the Pond Area, the sample analyte list

will be expanded to include all of the surface soils COCs identified in the HHRA for both of these areas. The additional analytes include arsenic, volatile organic compounds (VOCs; benzene, ethylbenzene, total xylenes), semivolatile organic compounds (SVOCs; 1,1-biphenyl, carbazole and dibenzofuran), and pesticides (aldrin).

#### 1.3.2 Untreated Wood Storage Area

The Untreated Wood Storage Area within OU4 was subdivided into 0.25-acre or less exposure areas (Figure 3) to generate data at a sufficient density to allow for the evaluation of future residential use and compliance with the EPA no action criteria and the NCDEQ unrestricted use criteria under North Carolina General Statute § 143B-279.9(d)(1). The sampling strategy will follow the approach taken in OU2: one 5-point composite sample will be collected from each of the 0.25-acre or less exposure areas. The composites will include one aliquot from the center of the sampling area and four aliquots collected equidistant from the center of the sampling area to the parcel corner. Samples will be analyzed for PAHs, PCP, and dioxins/furans, consistent with previous sampling performed in OU1/OU2. No additional COCs were identified for the Untreated Wood Storage Area in the 2019 HHRA.

#### 1.3.3 Process Area

The Process Area is the portion of the Site where prior wood treatment operations took place. This area will be subdivided into four exposure areas of 2 acres or less (Figure 3) consistent with the exposure area size designated for evaluating industrial/commercial and recreational (youth sports player) land uses, as presented in the Risk Strategy White Paper. The exposure areas were delineated based on consideration of historical Site operations and the extent of contamination based on existing data. Each of the exposure areas will be sampled using the incremental sampling methodology (ISM; described in Section 2.6), with each exposure unit representing an ISM decision unit, to provide an understanding of the average representative chemical concentration across the exposure area.

ISM samples collected from the Process Area will be analyzed for PAHs, PCP, and dioxins/furans, consistent with previous sampling performed in OU1/OU2. Dibenzofuran, which is a COC identified in the HHRA for the Process Area based on residential land use, will also be evaluated.

### 1.3.4 Pond Area

The Pond Area where prior wood treatment operations took place will be subdivided into five exposure areas of 2 acres or less (Figure 3) consistent with the exposure area size designated for evaluating industrial/commercial and recreational (youth sports player) land uses. The exposure areas were delineated based on consideration of historical Site operations and the extent of contamination based on existing data. Each of the exposure areas will be sampled

using the ISM to evaluate all of the analytes but VOCs. Discrete samples will also be collected from each exposure area for analysis of VOCs.

ISM samples collected from the Pond Area will be analyzed for PAHs, PCP, and dioxins/furans, consistent with previous sampling performed in OU1/OU2. The following COCs identified in the HHRA for the Pond Area will also be evaluated: arsenic, SVOCs (1,1-biphenyl, carbazole, dibenzofuran), VOCs (ethylbenzene, benzene, total xylenes), and pesticides (aldrin). To analyze for VOCs, a separate, unhomogenized sample will be collected at 5 of the 30 sample increment locations that will be used to create the ISM sample in each exposure area of the Pond Area (Section 2.6). The addition of certain HHRA COCs (i.e., benzene, total xylenes, carbazole, and aldrin, which were designated only as residential COCs and not COCs for other human health receptors) to the analyte list is conservative, because the Pond Area is anticipated to be developed for industrial/commercial or recreational use in the future.

#### 1.3.5 Area Within the Floodplain

The southernmost portion of OU4 is located within the 100-year floodplain (Figure 3). The future land uses for this part of OU4 are constrained because it lies within a flood hazard area, and it is most likely to be used to support nature trails or other natural recreational use. Further, a portion of this area is within the wetlands boundary, as delineated in 2019 (Figure 3).

The area within the floodplain will be considered as a single exposure area<sup>1</sup> for evaluation of human health risks. This area will be divided into two exposure areas for the ecological risk evaluation, one area in the upland region between the wetland boundary (upland exposure area) and the floodplain boundary and one area between the wetlands boundary and the marsh boundary (wetlands exposure area). A total of 19 locations, 11 within the uplands exposure area and eight within the wetlands exposure area, have been identified for discrete sample collection in the area within the floodplain (Figure 3). The sample locations were selected based on existing data (limited to PAHs), consideration of the locations of the former ponds, and evaluation of the data needed to provide spatial coverage to support delineation of remediation areas should the risk assessments conclude there are unacceptable risks.

Soil samples will be analyzed for PAHs, PCP, and dioxins/furans, consistent with previous sampling performed in OU1/OU2. In addition, the sample analyte list for this area will be expanded to include all of the surface soil COCs identified in the HHRA for the Pond Area.<sup>2</sup> The additional analytes include arsenic, SVOCs (1,1-biphenyl, carbazole, dibenzofuran), VOCs (ethylbenzene, benzene, total xylenes), and pesticides (aldrin).

1 - 5

<sup>&</sup>lt;sup>1</sup> Note: The decommissioning pond includes areas that are both above and below the floodplain. For the purpose of the human health and ecological risk evaluation, the full decommissioning pond is considered to be above the floodplain.

<sup>&</sup>lt;sup>2</sup> The "Pond Area" as evaluated in the HHRA was inclusive of the area within the floodplain.

# 2 FIELD METHODS

Field activities will be conducted in general accordance with the most recent EPA Region 4 Laboratory Services and Applied Science Division (LSASD) operating procedures, and other procedures described in the Supplemental Remedial Investigation (SRI) Work Plan, dated May 2012 (AECOM 2012); the SRI Work Plan, dated September 2015 (CH2M Hill 2015a); and the OU1/OU2 Soil Sampling Work Plan and Addendum, dated July 2020 (EarthCon 2020a) and December 2020 (EarthCon 2020b). The number and type of samples to be collected in each OU and exposure area are detailed on Tables 1 through 6. Sampling locations are shown on Figures 2 and 3.

## 2.1 VEGETATION CLEARING

Sample locations may require removal of vegetation prior to sampling. Underbrush will be cleared from sampling locations, as needed. Cutting and clearing of trees and branches larger than 3 in. in diameter will be avoided. Existing roadways and/or paths should be utilized when possible to reduce the amount of clearing needed to access the sampling locations.

## 2.2 SURVEYING

After access is cleared of vegetation, a North Carolina-licensed surveyor will stake the composite and discrete sampling locations. The ISM sample locations will not be surveyed but will be located using a handheld global positioning system (GPS) unit as described in Section 2.6.1. Sample location coordinates are provided in Tables 1 through 4. Locations may be modified in the field because of surface obstructions (large trees, debris piles, etc.), in which case the surveyor and/or field team will provide updated coordinates. Horizontal data will be reported on the North American Datum of 1983 (NAD 83) and in the North Carolina State Plane Coordinate System. Vertical data will be reported on the North American Datum of 1988 (NAVD 88). Data will be delivered in United States Survey Feet.

## 2.3 SUBSURFACE DISCRETE SOIL SAMPLING (OU2)

Five discrete subsurface soil samples will be collected in OU2 in parcels SB-148, RISB05, SS-115, SB-136, CS-66, and CS-68. Additionally, discrete subsurface soil samples will be collected at three locations in parcel CS-56. Samples will be collected using a track-mounted direct-push drill rig. Sample IDs, coordinates, depths and collection methods are summarized in Table 1. Sampling locations are shown on Figure 2. Soil samples will be collected from each location using a 4-ft macrocore sampler. A new, dedicated acetate liner will be used for the collection of each soil core, and a photograph of each soil core will be taken.

Samples will be collected from intervals at 1–2 ft bgs and 2–3 ft bgs and will be submitted to the analytical laboratory. The laboratory will be instructed to analyze the samples from 1–2 ft bgs for dioxins/furans, and to archive the samples from 2–3 ft bgs for future analysis, if needed. All of the sample containers will be labeled and placed on ice for preservation immediately after collection. Samples will be shipped to SGS Laboratories for analysis.

## 2.4 SURFACE 5-POINT COMPOSITE SOIL SAMPLING (OU4)

Five-point composite surface soil samples will be collected in the OU4 Untreated Wood Storage Area and in the OU4 Eastern Undeveloped Area Boundary. Samples will be collected using a small diameter stainless steel soil coring device with dedicated acetate liners, or similar method, at 0–1 ft bgs. New acetate liners will be used at each sampling location. Sample IDs, coordinates, depths and collection methods are summarized in Table 2. Sampling locations are shown on Figure 3. Approximately half of each sample will be transferred to laboratorysupplied containers. The samples will be preserved on ice and shipped to the analytical laboratory, where they will be archived for future analysis, if needed. The other half of the sample will be placed in a stainless-steel bowl to be composited with the other four locations in that sample area. Once the five increments have been collected, the soil will be homogenized using a stainless-steel spoon. A sample of the homogenized soil will be collected and placed into laboratory-supplied containers and submitted for laboratory analysis of PAHs, PCP, and dioxins/furans for composite samples from both the Untreated Wood Storage Area and the eastern undeveloped area (Table 6). The composite samples collected from the boundary of the eastern undeveloped area will also be analyzed for arsenic, SVOCs (1,1-biphenyl, carbazole, and dibenzofuran), and pesticides (aldrin) (Table 6).

The sample locations will be located in the field using a handheld GPS unit capable of achieving an accuracy of ±1 ft horizontally. Locations may be modified in the field because of surface obstructions (large trees, debris piles, etc.). Updated coordinates for any repositioned samples will be logged using the GPS unit. All of the sample containers will be labeled and placed on ice for preservation immediately after collection. Samples will be shipped to SGS Laboratories for analysis.

### 2.5 SURFACE DISCRETE SOIL SAMPLING (OU4)

Discrete surface soil samples will be collected in:

- OU4 area within the floodplain;
- OU4 Eastern Undeveloped Area Boundary (VOCs only); and
- OU4 Pond Area (VOCs only)

These locations are shown in Figure 3. Sampling methods will vary depending on the sample location and whether the sample is to be submitted for VOC analysis (Table 6). Although the samples within the wetland boundary (Section 1.3.5) will be collected at low tide, the boundary between wetlands and the Southern Marsh is not clearly defined, and it is possible that some of the sample locations may be fully saturated/under water at the time of sampling. If these conditions are present and a representative sample cannot be collected at the planned location, the field team will move further inland (while remaining within the wetland boundary).

#### OU4 in the area within the floodplain

Discrete soil samples will be collected from within OU4 from the area within the floodplain using a small diameter stainless steel soil coring device with dedicated acetate liners, or similar method, at 0–1 ft bgs. New acetate liners will be used at each sampling location. VOC samples will be collected prior to sample homogenization. Following this, the remaining sample will be homogenized using a stainless-steel spoon and transferred to laboratory-supplied containers. Discrete samples collected in OU4 from the area within the floodplain will be submitted for laboratory analysis of PAHs, PCP, dioxins/furans, arsenic, SVOCs (1,1-biphenyl, carbazole, dibenzofuran), VOCs (benzene, ethylbenzene, and total xylenes), and aldrin (Table 6).

#### VOCs in OU4 Eastern Undeveloped Area Boundary

Because best practices for VOC analysis call for minimal disturbance of sample material (i.e., no homogenization of samples), surface discrete soil samples for VOC analysis will also be collected at each of the composite sample increment locations that will be used to make up the composite samples for the eastern undeveloped area boundary (Section 2.4; Table 6). VOC samples will be collected prior to homogenization and compositing of the increments. VOC samples will be submitted for the analysis of benzene, ethylbenzene, and total xylenes.

#### **VOCs in OU4 Pond Area**

Because best practices for VOC analysis call for minimal disturbance of sample material, a discrete surface soil sample for VOC analysis will also be collected from 5 of the 30 sample increment locations that will be used to make up the ISM samples for each of the exposure areas in the Pond Area (Section 2.6; Table 6). The VOC sample will be collected prior to homogenization or compositing of increments into the ISM samples. VOC samples will be submitted for the analysis of benzene, ethylbenzene, and total xylenes.

Sample IDs, coordinates, depths and collection methods are summarized in Tables 2 through 4. Sampling locations are shown on Figure 3. The sample locations will be located in the field using a handheld GPS unit capable of achieving an accuracy of ±1 ft horizontally. Locations may be modified in the field because of surface obstructions (large trees, debris piles, etc.). Updated locations will be logged using the GPS unit. All of the sample containers will be labeled and placed on ice for preservation immediately after collection. Samples will be shipped to SGS Laboratories for analysis.

### 2.6 INCREMENTAL SAMPLING METHODOLOGY (ISM) SOIL SAMPLING (OU4)

ISM soil sampling methods will be applied in the OU4 Pond and OU4 Process Areas above the floodplain. ISM is a structured composite sampling and processing protocol designed to reduce data variability and increase sample representativeness for a specified volume of soil. All procedures in this section are in accordance with the Interstate Technology and Regulatory Council (ITRC) ISM Update, dated October 2020 (ITRC 2020).

As described in Section 1.3.2, the area has been divided into nine exposure areas of 2 acres or less, as shown on Figure 3. In each exposure area, a sample increment will be collected from 30 locations, and the sample increments homogenized to create a single composite representative of average conditions across the exposure area. The 30 ISM sample increment locations were randomly selected for each exposure area using the Visual Sample Plan (VSP) software version 7.13 (PNNL 2020). Sample increment locations are shown on Figure 3, and sample IDs, and coordinates are presented in Table 4.

## 2.6.1 Sample Locations

ISM sample increment locations will be located using a handheld GPS unit capable of achieving an accuracy of ±1 ft horizontally. Locations may be modified in the field because of surface obstructions (large trees, debris piles, etc.). Updated locations will be logged using the GPS unit.

## 2.6.2 Sample Collection

ISM samples will be collected using a small diameter stainless steel soil coring device to collect approximately one-third cup (2.7 oz) of soil per location from 0–1 ft bgs. The incremental sample will be placed into a single 1- or 2-gal resealable plastic bag for each exposure area and submitted for laboratory compositing. All sample increments will be double bagged to help prevent punctures.

As part of the ISM process, triplicate samples (one initial sample and two quality control samples) will be collected in one of the nine exposure areas to meet the appropriate quality assurance and quality control requirements. Exposure area OU4-PO-03 has been selected for triplicate sampling (Figure 3). Triplicate sampling will entail collection of an increment from the primary sample point, followed by collection of a duplicate increment approximately 10 ft to the northeast of the primary point and a triplicate increment from approximately 10 ft to the

southwest of the primary point. The duplicate and triplicate increments will be collected and containerized in the same manner as the primary increment. GPS coordinates will be collected for each duplicate and triplicate location.

### 2.6.3 Laboratory Sample Aggregations and Subsampling

All of the sample containers will be labeled and placed on ice for preservation immediately after collection. ISM samples will be shipped to SGS Laboratories in Orlando, Florida, for processing. All compositing will be conducted in accordance with the laboratory standard operating procedures and ITRC ISM guidance (ITRC 2020). At the laboratory, each sample for a given exposure area will be thoroughly homogenized prior to subsampling.

Homogenizing will include spreading the composite ISM sample out evenly onto clean non-ink paper. The sample will be passed through a 10-mesh (2-mm) sieve, with soil aggregates gently broken up before sieving. After the ISM sample has been homogenized, the laboratory will collect subsamples using a 2D slabcake method. Target weights will be within ±1 g of that required for each analysis.

ISM samples collected from the Pond Area will be analyzed for PAHs, PCP, dioxins/furans, arsenic, SVOCs (1,1-biphenyl, carbazole, dibenzofuran), and pesticides (aldrin) (Table 6). ISM samples collected from the OU4 Process Area will be analyzed for PAHs, PCP, dioxins/furans, and dibenzofuran.

## 2.7 EQUIPMENT DECONTAMINATION

Decontamination procedures for field sampling equipment are described in EPA LSASD ASBPROC-206-R4 (USEPA 2019). Waste generated during decontamination will be containerized in 55-gal drums and disposed offsite in accordance with the SRI Waste Management Plan, dated September 2015 (CH2M Hill 2015b).

### 2.8 QUALITY CONTROL

Field quality control samples will be collected in accordance with the SRI Quality Assurance Project Plan (QAPP), dated September 2015 (CH2M Hill 2015c), as summarized below and in Tables 5 and 6.

- Field duplicates will be collected at a rate of 1 per 10 samples per area for discrete and composite samples.
- For ISM samples, triplicate samples will be collected in 1 of the 9 exposure units, as described in Section 2.6.

- Matrix spike/matrix spike duplicates (MS/MSD) will be collected at a rate of 1 per 20 samples per sample type, per COC. One MS/MSD sample will be collected in the laboratory from an ISM location by subsampling the remaining processed volume for the selected sample location.
- Field blanks will be collected at a rate of one per week per area.
- Equipment blanks will be collected at a rate of one blank per reusable equipment (stainless steel cores, hand augers, etc.) per media, per 20 samples collected; or one per week, whichever is more frequent. VOC samples will be collected using dedicated equipment; therefore, no equipment blanks will be collected for this analyte group.
- Trip blanks will be analyzed for VOC samples at a rate of 1 per cooler of samples.

### 2.9 INVESTIGATION-DERIVED WASTE SAMPLING AND MANAGEMENT

The following waste streams may be generated during this investigation:

- Used personal protective equipment, trash, and sampling materials
- Decontamination fluids.

Investigation-derived waste will be placed in a 55-gal drum pending offsite disposal and will be managed in accordance with the SRI Waste Management Plan (CH2M Hill 2015b).

# **3 LABORATORY METHODS**

Soil samples will be properly labeled with the date and time of the sample collection, and with the sample IDs provided in Tables 1 through 4. The samples will be properly packed on ice and shipped under chain-of-custody protocol for analysis at SGS Laboratories in Orlando, Florida. Depending on the soil sample location, samples will be analyzed for PAHs and SVOCs by SW-846 Method 8270D, PCP by SW-846 Method 8270D SIM, dioxins/furans by SW-846 Method 8290A, arsenic by SW-846 6010D, VOCs by SW-846 8260C, and aldrin by SW-846 8081B. Tables 5 and 6 summarize the analyze list for each sample area. Soil target parameters, analytical methods and minimum reporting limits are summarized in Table 7.

Laboratory analyses and reporting will be conducted in accordance with the SRI QAPP (CH2M Hill 2015c). Tables 5 and 6 provide a summary of the quality control samples to be collected.

The laboratory data will be validated, including a Level III (EPA Stage 2A) validation of 90 percent of the data and a Level IV validation (EPA Stage 4) of 10 percent of the laboratory data.

## **4 DATA EVALUATION AND REPORTING**

Following receipt of laboratory data and validation, data will be evaluated and reported as detailed in the following sections.

## 4.1 TOXICITY EQUIVALENT CALCULATIONS

Consistent with previous reporting at the Site, soil data for PAHs will be converted to benzo[*a*]pyrene (BaP) toxicity equivalence (BaP-TEQ) using BaP as the index PAH (USEPA 1993). BaP-TEQ values will be calculated by computing the sum across congeners of the product of each compound concentration and its relative potency factor (RPF) (USEPA 2010a). RPFs are available for seven carcinogenic PAHs. Non-detect results will be included as one-half the method detection limit.

The dioxin/furan results will be converted to TEQ concentrations using TCDD as the index compound. TCDD TEQ values will be calculated by computing the sum across congeners of the product of a congener-specific concentration and the 2005 World Health Organization mammalian toxic equivalency factors for 17 congeners present in dioxin/furan mixtures (Van den Berg et al. 2006; USEPA 2010b). Non-detect results will be included as the method detection limit.

### 4.2 REPORTING

The data collected under this Work Plan will be reported in three separate documents—a technical memorandum documenting the results in OU2, an HHRA addendum for OU4, and an ecological risk assessment for OU4. Specifics for these evaluations are detailed in the Risk Strategy White Paper.

# 5 IMPLEMENTATION SCHEDULE

The table below provides the proposed implementation schedule.

| Task Name                                         | Estimated<br>Duration |
|---------------------------------------------------|-----------------------|
| Vegetation Clearing and Surveying                 | 2 weeks               |
| Site Setup                                        | 1 day                 |
| Soil Sampling                                     | 3 weeks               |
| Laboratory Analysis                               | 2 weeks               |
| Data Validation                                   | 3 weeks               |
| Preliminary Results Distribution to EPA and NCDEQ | 1 week                |
| Draft Technical Memoranda                         | 10 weeks              |

## 6 REFERENCES

AECOM. 2012. Supplemental remedial investigation work plan, Kerr-McGee Chemical Corporation Site – Navassa, NC. AECOM. May.

CH2M Hill. 2015a. Supplemental remedial investigation work plan, Kerr-McGee Chemical Corporation Site – Navassa, NC. CH2M Hill. September.

CH2M Hill. 2015b. Supplemental Remedial Investigation Work Plan—waste management plan, Kerr-McGee Chemical Corporation Site – Navassa, NC. CH2M Hill. September.

CH2M Hill. 2015c. Supplemental remedial investigation work plan—quality assurance project plan, Kerr-McGee Chemical Corporation Site – Navassa, NC. CH2M Hill. September.

EarthCon. 2019a. Human health risk assessment, Kerr-McGee Chemical Corp, Navassa, North Carolina. EarthCon Consultants of North Carolina, P.C. April.

EarthCon. 2019b. 2019 Soil sampling technical memorandum, Kerr-McGee Chemical Corp – Navassa Superfund Site, Navassa, North Carolina. EarthCon Consultants of North Carolina, P.C. August.

EarthCon. 2019c. Soil sampling work plan – Operable Unit 1, Kerr-McGee Chemical Corp – Navassa Superfund Site, Navassa, North Carolina. EarthCon Consultants of North Carolina, P.C. June.

EarthCon. 2020a. OU1/OU2 soil sampling work plan, Kerr-McGee Chemical Corp – Navassa Superfund Site, Navassa, North Carolina. EarthCon Consultants of North Carolina, P.C. July.

EarthCon. 2020b. OU1/OU2 soil sampling work plan, Addendum No. 2, Kerr-McGee Chemical Corp – Navassa Superfund Site, Navassa, North Carolina. EarthCon Consultants of North Carolina, P.C. December.

Integral, EarthCon, and Ramboll. 2021. White paper on addressing human health and ecological risks from exposures to impacted soils in OU2 and OU4. Prepared for the Greenfield Environmental Multistate Trust, LLC. Integral Engineering, P.C.; EarthCon Consultants of North Carolina, P.C.; and Ramboll Environ US Corp. March.

ITRC. 2020. Incremental sampling methodology update. Interstate Technology & Regulatory Council. October.

NCDEQ. 2020. Guidelines for assessment and cleanup of contaminated sites, Version 2. North Carolina Department of Environmental Quality. January.

PNNL. 2020. Visual sample plan, Version 7.13. Pacific Northwest National Laboratory.

USEPA. 1993. Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. EPA/600/R-93/089, U.S. Environmental Protection Agency, July 1993.

Development of relative potency factor (RPF) approach for polycyclic aromatic hydrocarbon (PAH) Mixtures. EPA/635/R-08/012A. U.S. Environmental Protection Agency. February.

USEPA. 2010b. Recommended toxicity equivalence factors (TEFs) for human health risk assessments of 2,3,7,8-tetrachlorodibenzo-p-dioxin and dioxin-like compounds. EPA/100/R 10/005. U.S. Environmental Protection Agency. December.

USEPA. 2010a. USEPA. 2019. Field equipment cleaning and decontamination at the FEC. ASBPROC-206-R4, U.S. Environmental Protection Agency. October.

Van den Berg, M., L.S. Birnbaum, M. Denison, et al. 2006. The 2005 World Health Organization re-evaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. *Toxicol. Sci.* 93(2):223-241.

# Figures







Greenfield Environmental Multistate Trust LLC Trustee of the Multistate Environmental Response Trust

Figure 1. Site Overview Kerr-McGee Chemical Corp. - Navassa Superfund Site Navassa, North Carolina OU2/OU4 Soil Sampling Work Plan May 2021





Greenfield Environmental Multistate Trust LLC Trustee of the Multistate Environmental Response Trust

**Figure 2.** OU2 Sampling Locations Kerr-McGee Chemical Corp. - Navassa Superfund Site Navassa, North Carolina OU2/OU4 Soil Sampling Work Plan May 2021





May 2021

# Tables

| Polvaon / | Coordinates   |              | _ 2020 Surface | 2021 Sa              | ample ID             |
|-----------|---------------|--------------|----------------|----------------------|----------------------|
| Sample    |               |              | Sample         | 1 to 2 ft bgs Sample | 2 to 3 ft bgs Sample |
| Location  | Northing (ft) | Easting (ft) | Location       | Discrete Sample ID   | Discrete Sample ID   |
|           | 184616.2438   | 2303508.406  | CS-RISB05-A    | CS-RISB05-A(1-2)     | CS-RISB05-A(2-3)     |
|           | 184626.2438   | 2303508.406  | CS-RISB05-B    | CS-RISB05-B(1-2)     | CS-RISB05-B(2-3)     |
| RISB05    | 184616.2438   | 2303518.406  | CS-RISB05-C    | CS-RISB05-C(1-2)     | CS-RISB05-C(2-3)     |
|           | 184606.2438   | 2303508.406  | CS-RISB05-D    | CS-RISB05-D(1-2)     | CS-RISB05-D(2-3)     |
|           | 184616.2438   | 2303498.406  | CS-RISB05-E    | CS-RISB05-E(1-2)     | CS-RISB05-E(2-3)     |
|           | 184018.194    | 2303213.582  | CS-SB-136-A    | CS-SB-136-A(1-2)     | CS-SB-136-A(2-3)     |
|           | 184043.194    | 2303213.582  | CS-SB-136-B    | CS-SB-136-B(1-2)     | CS-SB-136-B(2-3)     |
| SB-136    | 184018.194    | 2303248.582  | CS-SB-136-C    | CS-SB-136-C(1-2)     | CS-SB-136-C(2-3)     |
|           | 183993.194    | 2303213.582  | CS-SB-136-D    | CS-SB-136-D(1-2)     | CS-SB-136-D(2-3)     |
|           | 184018.194    | 2303178.582  | CS-SB-136-E    | CS-SB-136-E(1-2)     | CS-SB-136-E(2-3)     |
|           | 184717.4451   | 2303491.146  | CS-SB-148-A    | CS-SB-148-A(1-2)     | CS-SB-148-A(2-3)     |
|           | 184743.4868   | 2303470.573  | CS-SB-148-B    | CS-SB-148-B(1-2)     | CS-SB-148-B(2-3)     |
| SB-148    | 184717.4451   | 2303526.146  | CS-SB-148-C    | CS-SB-148-C(1-2)     | CS-SB-148-C(2-3)     |
|           | 184676.2993   | 2303508.073  | CS-SB-148-D    | CS-SB-148-D(1-2)     | CS-SB-148-D(2-3)     |
|           | 184739.3201   | 2303417.865  | CS-SB-148-E    | CS-SB-148-E(1-2)     | CS-SB-148-E(2-3)     |
|           | 184065.2711   | 2303126.984  | CS-SS-115-A    | CS-SS-115-A(1-2)     | CS-SS-115-A(2-3)     |
|           | 184090.2711   | 2303126.984  | CS-SS-115-B    | CS-SS-115-B(1-2)     | CS-SS-115-B(2-3)     |
| SS-115    | 184065.2711   | 2303151.984  | CS-SS-115-C    | CS-SS-115-C(1-2)     | CS-SS-115-C(2-3)     |
|           | 184040.2711   | 2303126.984  | CS-SS-115-D    | CS-SS-115-D(1-2)     | CS-SS-115-D(2-3)     |
|           | 184065.2711   | 2303101.984  | CS-SS-115-E    | CS-SS-115-E(1-2)     | CS-SS-115-E(2-3)     |
|           | 184777.816    | 2303006.822  | CS-56-A        | CS-56-A(1-2)         | CS-56-A(2-3)         |
| CS-56     | 184804.0259   | 2303006.854  | CS-56-B        | CS-56-B(1-2)         | CS-56-B(2-3)         |
|           | 184777.921    | 2303036.361  | CS-56-C        | CS-56-C(1-2)         | CS-56-C(2-3)         |
|           | 184055.619    | 2303020.472  | CS-66-A        | CS-66-A(1-2)         | CS-66-A(2-3)         |
|           | 184081.4709   | 2303020.74   | CS-66-B        | CS-66-B(1-2)         | CS-66-B(2-3)         |
| CS-66     | 184055.6741   | 2303043.659  | CS-66-C        | CS-66-C(1-2)         | CS-66-C(2-3)         |
|           | 184029.5062   | 2303020.598  | CS-66-D        | CS-66-D(1-2)         | CS-66-D(2-3)         |
|           | 184055.6029   | 2302997.559  | CS-66-E        | CS-66-E(1-2)         | CS-66-E(2-3)         |
|           | 183916.9401   | 2303030.042  | CS-68-A        | CS-68-A(1-2)         | CS-68-A(2-3)         |
|           | 183935.446    | 2303029.798  | CS-68-B        | CS-68-B(1-2)         | CS-68-B(2-3)         |
| CS-68     | 183916.824    | 2303056.691  | CS-68-C        | CS-68-C(1-2)         | CS-68-C(2-3)         |
|           | 183898.4431   | 2303029.87   | CS-68-D        | CS-68-D(1-2)         | CS-68-D(2-3)         |
|           | 183916.844    | 2303003.04   | CS-68-E        | CS-68-E(1-2)         | CS-68-E(2-3)         |

Table 1. OU2 Subsurface Soil Sampling Locations

Notes:

Samples highlighted in **grey** will be sent to the laboratory for immediate analysis. All other samples will be archived at the laboratory for potential future analysis.

Coordinates are presented in North Carolina State Plane, North American Datum 1983.

bgs = below ground surface

| Sample Location    | Northing (ft)                     | Easting (ft) | Discrete Sample ID | Composite Sample ID |  |  |  |
|--------------------|-----------------------------------|--------------|--------------------|---------------------|--|--|--|
| Untreated Wood Ste | Jntreated Wood Storage Area (UWS) |              |                    |                     |  |  |  |
|                    | 183779.8336                       | 2302942.094  | OU4-UWS-01-A       |                     |  |  |  |
|                    | 183757.0868                       | 2303014.248  | OU4-UWS-01-B       |                     |  |  |  |
| OU4-UWS-01         | 183750.9188                       | 2302973.398  | OU4-UWS-01-C       | OU4-UWS-01(0-1)     |  |  |  |
|                    | 183744.9556                       | 2302932.917  | OU4-UWS-01-D       |                     |  |  |  |
|                    | 183721.7883                       | 2303003.756  | OU4-UWS-01-E       |                     |  |  |  |
|                    | 183734.8856                       | 2303085.568  | OU4-UWS-02-A       |                     |  |  |  |
|                    | 183713.5683                       | 2303157.158  | OU4-UWS-02-B       |                     |  |  |  |
| OU4-UWS-02         | 183706.5164                       | 2303116.038  | OU4-UWS-02-C       | OU4-UWS-02(0-1)     |  |  |  |
|                    | 183699.5871                       | 2303075.076  | OU4-UWS-02-D       |                     |  |  |  |
|                    | 183678.0236                       | 2303146.063  | OU4-UWS-02-E       |                     |  |  |  |
|                    | 183709.7111                       | 2302922.666  | OU4-UWS-03-A       |                     |  |  |  |
|                    | 183686.5438                       | 2302993.505  | OU4-UWS-03-B       |                     |  |  |  |
| OU4-UWS-03         | 183680.4298                       | 2302952.896  | OU4-UWS-03-C       | OU4-UWS-03(0-1)     |  |  |  |
|                    | 183674.0394                       | 2302912.419  | OU4-UWS-03-D       |                     |  |  |  |
|                    | 183651.3175                       | 2302983.258  | OU4-UWS-03-E       |                     |  |  |  |
|                    | 183663.9647                       | 2303064.381  | OU4-UWS-04-A       |                     |  |  |  |
|                    | 183642.4013                       | 2303135.368  | OU4-UWS-04-B       |                     |  |  |  |
| OU4-UWS-04         | 183635.2717                       | 2303094.647  | OU4-UWS-04-C       | OU4-UWS-04(0-1)     |  |  |  |
|                    | 183628.7385                       | 2303054.134  | OU4-UWS-04-D       |                     |  |  |  |
|                    | 183606.1044                       | 2303123.763  | OU4-UWS-04-E       |                     |  |  |  |
|                    | 183638.4241                       | 2302902.23   | OU4-UWS-05-A       |                     |  |  |  |
|                    | 183615.7023                       | 2302973.069  | OU4-UWS-05-B       |                     |  |  |  |
| OU4-UWS-05         | 183609.1994                       | 2302932.517  | OU4-UWS-05-C       | OU4-UWS-05(0-1)     |  |  |  |
|                    | 183602.4851                       | 2302892.28   | OU4-UWS-05-D       |                     |  |  |  |
|                    | 183580.0603                       | 2302962.525  | OU4-UWS-05-E       |                     |  |  |  |
|                    | 183592.9761                       | 2303043.101  | OU4-UWS-06-A       |                     |  |  |  |
|                    | 183570.3421                       | 2303112.73   | OU4-UWS-06-B       |                     |  |  |  |
| OU4-UWS-06         | 183563.747                        | 2303072.581  | OU4-UWS-06-C       | OU4-UWS-06(0-1)     |  |  |  |
|                    | 183557.3341                       | 2303032.557  | OU4-UWS-06-D       |                     |  |  |  |
|                    | 183534.3627                       | 2303101.605  | OU4-UWS-06-E       |                     |  |  |  |

Table 2. OU4 Surface Soil Sampling Locations for the Untreated Wood Storage Area and Eastern Undeveloped Area

| Sample Location | Northing (ft) | Easting (ft) | Discrete Sample ID | Composite Sample ID |
|-----------------|---------------|--------------|--------------------|---------------------|
|                 | 183566.5188   | 2302881.697  | OU4-UWS-07-A       |                     |
|                 | 183544.094    | 2302951.941  | OU4-UWS-07-B       |                     |
| OU4-UWS-07      | 183537.2668   | 2302911.351  | OU4-UWS-07-C       | OU4-UWS-07(0-1)     |
|                 | 183529.0082   | 2302871.623  | OU4-UWS-07-D       |                     |
|                 | 183509.046    | 2302941.694  | OU4-UWS-07-E       |                     |
|                 | 183521.1582   | 2303021.536  | OU4-UWS-08-A       |                     |
|                 | 183498.1869   | 2303090.585  | OU4-UWS-08-B       |                     |
| OU4-UWS-08      | 183491.3954   | 2303050.541  | OU4-UWS-08-C       | OU4-UWS-08(0-1)     |
|                 | 183484.4766   | 2303010.844  | OU4-UWS-08-D       |                     |
|                 | 183461.6457   | 2303079.122  | OU4-UWS-08-E       |                     |
|                 | 183488.3052   | 2302870.247  | OU4-UWS-09-A       |                     |
|                 | 183470.1997   | 2302934.555  | OU4-UWS-09-B       |                     |
| OU4-UWS-09      | 183459.5743   | 2302897.072  | OU4-UWS-09-C       | OU4-UWS-09(0-1)     |
|                 | 183450.5965   | 2302858.964  | OU4-UWS-09-D       |                     |
|                 | 183429.7012   | 2302923.552  | OU4-UWS-09-E       |                     |
|                 | 183447.7502   | 2302999.232  | OU4-UWS-10-A       |                     |
|                 | 183424.9193   | 2303067.51   | OU4-UWS-10-B       |                     |
| OU4-UWS-10      | 183417.9425   | 2303027.316  | OU4-UWS-10-C       | OU4-UWS-10(0-1)     |
|                 | 183408.8854   | 2302988.674  | OU4-UWS-10-D       |                     |
|                 | 183389.2378   | 2303055.368  | OU4-UWS-10-E       |                     |
|                 | 183411.9237   | 2302847.654  | OU4-UWS-11-A       |                     |
|                 | 183391.0283   | 2302912.243  | OU4-UWS-11-B       |                     |
| OU4-UWS-11      | 183382.2285   | 2302874.453  | OU4-UWS-11-C       | OU4-UWS-11(0-1)     |
|                 | 183373.0326   | 2302836.629  | OU4-UWS-11-D       |                     |
|                 | 183352.8479   | 2302901.758  | OU4-UWS-11-E       |                     |
|                 | 183370.8496   | 2302977.809  | OU4-UWS-12-A       |                     |
|                 | 183351.202    | 2303044.502  | OU4-UWS-12-B       |                     |
| OU4-UWS-12      | 183341.871    | 2303005.586  | OU4-UWS-12-C       | OU4-UWS-12(0-1)     |
|                 | 183332.6691   | 2302967.324  | OU4-UWS-12-D       |                     |
|                 | 183312.5993   | 2303032.083  | OU4-UWS-12-E       |                     |

Table 2. OU4 Surface Soil Sampling Locations for the Untreated Wood Storage Area and Eastern Undeveloped Area

| Sample Location | Northing (ft) | Easting (ft) | Discrete Sample ID | Composite Sample ID |
|-----------------|---------------|--------------|--------------------|---------------------|
|                 | 183334.2148   | 2302825.924  | OU4-UWS-13-A       |                     |
|                 | 183314.0301   | 2302891.054  | OU4-UWS-13-B       |                     |
| OU4-UWS-13      | 183304.5929   | 2302853.044  | OU4-UWS-13-C       | OU4-UWS-13(0-1)     |
|                 | 183294.9764   | 2302815.092  | OU4-UWS-13-D       |                     |
|                 | 183275.0934   | 2302880.265  | OU4-UWS-13-E       |                     |
|                 | 183293.7405   | 2302955.788  | OU4-UWS-14-A       |                     |
|                 | 183273.6707   | 2303020.547  | OU4-UWS-14-B       |                     |
| OU4-UWS-14      | 183264.0137   | 2302982.514  | OU4-UWS-14-C       | OU4-UWS-14(0-1)     |
|                 | 183254.8039   | 2302945      | OU4-UWS-14-D       |                     |
|                 | 183233.7837   | 2303007.859  | OU4-UWS-14-E       |                     |
|                 | 183255.7338   | 2302804.324  | OU4-UWS-15-A       |                     |
|                 | 183235.8509   | 2302869.498  | OU4-UWS-15-B       |                     |
| OU4-UWS-15      | 183226.1078   | 2302831.508  | OU4-UWS-15-C       | OU4-UWS-15(0-1)     |
|                 | 183217.3122   | 2302793.717  | OU4-UWS-15-D       |                     |
|                 | 183195.6959   | 2302857.318  | OU4-UWS-15-E       |                     |
|                 | 183215.1214   | 2302932.4    | OU4-UWS-16-A       |                     |
|                 | 183194.1013   | 2302995.258  | OU4-UWS-16-B       |                     |
| OU4-UWS-16      | 183184.6488   | 2302957.313  | OU4-UWS-16-C       | OU4-UWS-16(0-1)     |
|                 | 183174.5456   | 2302920.093  | OU4-UWS-16-D       |                     |
|                 | 183154.438    | 2302981.619  | OU4-UWS-16-E       |                     |
|                 | 183177.9191   | 2302781.732  | OU4-UWS-17-A       |                     |
|                 | 183156.3029   | 2302845.334  | OU4-UWS-17-B       |                     |
| OU4-UWS-17      | 183147.3216   | 2302807.54   | OU4-UWS-17-C       | OU4-UWS-17(0-1)     |
|                 | 183137.7639   | 2302770.358  | OU4-UWS-17-D       |                     |
|                 | 183116.9727   | 2302832.88   | OU4-UWS-17-E       |                     |
|                 | 183134.1507   | 2302906.92   | OU4-UWS-18-A       |                     |
|                 | 183114.0431   | 2302968.446  | OU4-UWS-18-B       |                     |
| OU4-UWS-18      | 183103.8591   | 2302930.966  | OU4-UWS-18-C       | OU4-UWS-18(0-1)     |
|                 | 183092.6574   | 2302893.851  | OU4-UWS-18-D       |                     |
|                 | 183074,2423   | 2302955.482  | OU4-UWS-18-E       |                     |

Table 2. OU4 Surface Soil Sampling Locations for the Untreated Wood Storage Area and Eastern Undeveloped Area

| Sample Location | Northing (ft) | Easting (ft) | Discrete Sample ID | Composite Sample ID |
|-----------------|---------------|--------------|--------------------|---------------------|
|                 | 183097.6586   | 2302758.456  | OU4-UWS-19-A       |                     |
|                 | 183076.8674   | 2302820.978  | OU4-UWS-19-B       |                     |
| OU4-UWS-19      | 183067.1109   | 2302783.736  | OU4-UWS-19-C       | OU4-UWS-19(0-1)     |
|                 | 183056.6702   | 2302747.021  | OU4-UWS-19-D       |                     |
|                 | 183036.9186   | 2302808.801  | OU4-UWS-19-E       |                     |
|                 | 183051.7986   | 2302881.292  | OU4-UWS-20-A       |                     |
|                 | 183033.3835   | 2302942.923  | OU4-UWS-20-B       |                     |
| OU4-UWS-20      | 183022.1414   | 2302905.847  | OU4-UWS-20-C       | OU4-UWS-20(0-1)     |
|                 | 183012.0618   | 2302869.023  | OU4-UWS-20-D       |                     |
|                 | 182991.4915   | 2302928.852  | OU4-UWS-20-E       |                     |
|                 | 183019.3701   | 2302735.38   | OU4-UWS-21-A       |                     |
|                 | 182999.6184   | 2302797.16   | OU4-UWS-21-B       |                     |
| OU4-UWS-21      | 182992.5106   | 2302760.454  | OU4-UWS-21-C       | OU4-UWS-21(0-1)     |
|                 | 182984.0868   | 2302725.459  | OU4-UWS-21-D       |                     |
|                 | 182966.1703   | 2302783.906  | OU4-UWS-21-E       |                     |
|                 | 182971.4738   | 2302854.57   | OU4-UWS-22-A       |                     |
|                 | 182950.9035   | 2302914.399  | OU4-UWS-22-B       |                     |
| OU4-UWS-22      | 182940.9655   | 2302876.942  | OU4-UWS-22-C       | OU4-UWS-22(0-1)     |
|                 | 182931.5618   | 2302838.618  | OU4-UWS-22-D       |                     |
|                 | 182911.5016   | 2302896.085  | OU4-UWS-22-E       |                     |
|                 | 182949.6385   | 2302713.823  | OU4-UWS-23-A       |                     |
|                 | 182931.7219   | 2302772.269  | OU4-UWS-23-B       |                     |
| OU4-UWS-23      | 182923.614    | 2302737.182  | OU4-UWS-23-C       | OU4-UWS-23(0-1)     |
|                 | 182914.2652   | 2302703.877  | OU4-UWS-23-D       |                     |
|                 | 182897.9898   | 2302758.787  | OU4-UWS-23-E       |                     |
|                 | 182889.7678   | 2302810.88   | OU4-UWS-24-A       |                     |
|                 | 182869.7076   | 2302868.346  | OU4-UWS-24-B       |                     |
| OU4-UWS-24      | 182857.3774   | 2302821.465  | OU4-UWS-24-C       | OU4-UWS-24(0-1)     |
|                 | 182831.8455   | 2302787.729  | OU4-UWS-24-D       |                     |
|                 | 182822.932    | 2302813.643  | OU4-UWS-24-E       |                     |

Table 2. OU4 Surface Soil Sampling Locations for the Untreated Wood Storage Area and Eastern Undeveloped Area

| Sample Location     | Northing (ft) | Easting (ft) | Discrete Sample ID | Composite Sample ID |
|---------------------|---------------|--------------|--------------------|---------------------|
|                     | 182879.7859   | 2302692.008  | OU4-UWS-25-A       |                     |
|                     | 182863.5105   | 2302746.919  | OU4-UWS-25-B       |                     |
| OU4-UWS-25          | 182854.6553   | 2302713.444  | OU4-UWS-25-C       | OU4-UWS-25(0-1)     |
|                     | 182843.7538   | 2302681.877  | OU4-UWS-25-D       |                     |
|                     | 182830.4845   | 2302733.719  | OU4-UWS-25-E       |                     |
| Eastern Undeveloped | d Area (EUA)  |              |                    |                     |
|                     | 183610.9528   | 2303195.128  | OU4-EUA-01-A       |                     |
|                     | 183564.5645   | 2303179.99   | OU4-EUA-01-B       |                     |
| OU4-EUA-01          | 183415.1295   | 2303135.267  | OU4-EUA-01-C       | OU4-EUA-01(0-1)     |
|                     | 183515.1987   | 2303163.926  | OU4-EUA-01-D       |                     |
|                     | 183463.2515   | 2303146.028  | OU4-EUA-01-E       |                     |
|                     | 183310.0623   | 2303099      | OU4-EUA-02-A       |                     |
|                     | 183354.5892   | 2303113.735  | OU4-EUA-02-B       |                     |
| OU4-EUA-02          | 183215.9917   | 2303069.887  | OU4-EUA-02-C       | OU4-EUA-02(0-1)     |
|                     | 183264.8632   | 2303084.88   | OU4-EUA-02-D       |                     |
|                     | 183170.9349   | 2303056.484  | OU4-EUA-02-E       |                     |
|                     | 183156.1997   | 2303109.48   | OU4-EUA-03-A       |                     |
|                     | 183143.0688   | 2303157.544  | OU4-EUA-03-B       |                     |
| OU4-EUA-03          | 183116.5348   | 2303241.677  | OU4-EUA-03-C       | OU4-EUA-03(0-1)     |
|                     | 183128.6517   | 2303199.685  | OU4-EUA-03-D       |                     |
|                     | 183103.1715   | 2303286.67   | OU4-EUA-03-E       |                     |
|                     | 183087.1366   | 2303359.099  | OU4-EUA-04-A       |                     |
|                     | 183067.6914   | 2303450.021  | OU4-EUA-04-B       |                     |
| OU4-EUA-04          | 183076.6774   | 2303407.718  | OU4-EUA-04-C       | OU4-EUA-04(0-1)     |
|                     | 183057.7729   | 2303492.77   | OU4-EUA-04-D       |                     |
|                     | 183046.79     | 2303531.552  | OU4-EUA-04-E       |                     |

Table 2. OU4 Surface Soil Sampling Locations for the Untreated Wood Storage Area and Eastern Undeveloped Area

Notes:

Samples highlighted in **grey** will be sent to the laboratory for immediate analysis. Discrete samples collected from the Untreated Wood Storage Area will be archived at the laboratory for potential future analysis.

Coordinates are presented in North Carolina State Plane, North American Datum 1983.

| Location ID | Northing (ft) | Easting (ft) | Sample ID      |
|-------------|---------------|--------------|----------------|
| FP-01       | 182506.46     | 2302324.62   | OU4-FP-01(0-1) |
| FP-02       | 182443.16     | 2302453.80   | OU4-FP-02(0-1) |
| FP-03       | 182406.36     | 2302600.63   | OU4-FP-03(0-1) |
| FP-04       | 182413.70     | 2302680.18   | OU4-FP-04(0-1) |
| FP-05       | 182435.36     | 2302731.07   | OU4-FP-05(0-1) |
| FP-06       | 182509.11     | 2302834.37   | OU4-FP-06(0-1) |
| FP-07       | 182553.88     | 2302947.14   | OU4-FP-07(0-1) |
| FP-08       | 182619.86     | 2303026.43   | OU4-FP-08(0-1) |
| FP-09       | 182675.16     | 2303139.83   | OU4-FP-09(0-1) |
| FP-10       | 182729.10     | 2303231.14   | OU4-FP-10(0-1) |
| FP-11       | 182964.66     | 2303479.42   | OU4-FP-11(0-1) |
| FP-12       | 182361.35     | 2302633.56   | OU4-FP-12(0-1) |
| FP-13       | 182408.11     | 2302810.65   | OU4-FP-13(0-1) |
| FP-14       | 182485.28     | 2302982.67   | OU4-FP-14(0-1) |
| FP-15       | 182602.77     | 2303201.12   | OU4-FP-15(0-1) |
| FP-16       | 182689.11     | 2303348.92   | OU4-FP-16(0-1) |
| FP-17       | 182782.07     | 2303475.40   | OU4-FP-17(0-1) |
| FP-18       | 182823.22     | 2303645.64   | OU4-FP-18(0-1) |
| FP-19       | 182698.38     | 2303747.61   | OU4-FP-19(0-1) |

Table 3. OU4 Surface Soil Sampling Locations for the Area within the Floodplain

Notes:

Coordinates are presented in North Carolina State Plane, North American Datum 1983.

| Table 4. 004 Surface | e Soli Sampling Loo | cations for the Proc | ess Area and Pond A | lea          |                |
|----------------------|---------------------|----------------------|---------------------|--------------|----------------|
|                      |                     |                      | ISM Increment       | Discrete VOC | Composited ISM |
| Exposure Area        | Northing (ft)       | Easting (ft)         | ID                  | Sample ID    | Sample ID      |
|                      | 183684 91           | 2302579.69           | OU4-PR-01-01        |              |                |
|                      | 183628.02           | 2302585 30           | OU4-PR-01-02        |              |                |
|                      | 102602 00           | 22022000.00          |                     |              |                |
|                      | 103002.00           | 2302030.21           |                     |              |                |
|                      | 103703.17           | 2302047.05           | 004-PR-01-04        |              |                |
|                      | 183822.07           | 2302658.28           | 004-PR-01-05        |              |                |
|                      | 183655.45           | 2302663.90           | 004-PR-01-06        |              |                |
|                      | 183602.62           | 2302669.51           | OU4-PR-01-07        |              |                |
|                      | 183874.90           | 2302675.12           | OU4-PR-01-08        |              |                |
|                      | 183637.17           | 2302686.35           | OU4-PR-01-09        |              |                |
|                      | 183767.21           | 2302691.96           | OU4-PR-01-10        |              |                |
|                      | 183710.31           | 2302697.58           | OU4-PR-01-11        |              |                |
|                      | 183820.04           | 2302708.81           | OU4-PR-01-12        |              |                |
|                      | 183657.48           | 2302714.42           | OU4-PR-01-13        |              |                |
|                      | 183600 59           | 2302720.03           | OU4-PR-01-14        |              |                |
|                      | 183641 74           | 2302736.88           | OU4-PR-01-15        |              |                |
| OU4-PR-01            | 183608 63           | 2302748 10           |                     |              | OU4-PR-01(0-1) |
|                      | 102090.05           | 2302740.10           |                     |              |                |
|                      | 103000.33           | 2302739.33           | 004-PR-01-17        |              |                |
|                      | 183751.40           | 2302764.95           | 004-PR-01-18        |              |                |
|                      | 183842.89           | 2302776.17           | OU4-PR-01-19        |              |                |
|                      | 183643.77           | 2302781.79           | OU4-PR-01-20        |              |                |
|                      | 183586.88           | 2302787.40           | OU4-PR-01-21        |              |                |
|                      | 183696.60           | 2302798.63           | OU4-PR-01-22        |              |                |
|                      | 183534.05           | 2302804.24           | OU4-PR-01-23        |              |                |
|                      | 183806.32           | 2302809.86           | OU4-PR-01-24        |              |                |
|                      | 183669.17           | 2302832.31           | OU4-PR-01-25        |              |                |
|                      | 183616.34           | 2302837.93           | OU4-PR-01-26        |              |                |
|                      | 183778 89           | 2302843 54           | OU4-PR-01-27        |              |                |
|                      | 183726.06           | 2302840 15           |                     |              |                |
|                      | 183760.60           | 2302865.00           |                     |              |                |
|                      | 103700.00           | 2302003.99           | OU4-FIX-01-29       |              |                |
|                      | 103/00.92           | 2302094.00           | OU4-PR-01-30        |              |                |
|                      | 103430.04           | 2302793.31           | 004-PR-02-01        |              |                |
|                      | 183557.24           | 2302558.16           | 004-PR-02-02        |              |                |
|                      | 183355.24           | 2302746.28           | 004-PR-02-03        |              |                |
|                      | 183476.44           | 2302652.22           | OU4-PR-02-04        |              |                |
|                      | 183361.22           | 2302661.04           | OU4-PR-02-05        |              |                |
|                      | 183482.42           | 2302566.98           | OU4-PR-02-06        |              |                |
|                      | 183280.43           | 2302755.10           | OU4-PR-02-07        |              |                |
|                      | 183401.62           | 2302519.95           | OU4-PR-02-08        |              |                |
|                      | 183522.82           | 2302708.07           | OU4-PR-02-09        |              |                |
|                      | 183320.83           | 2302614.01           | OU4-PR-02-10        |              |                |
|                      | 183442.02           | 2302802.13           | OU4-PR-02-11        |              |                |
|                      | 183374 69           | 2302590 49           | OU4-PR-02-12        |              |                |
|                      | 183495 89           | 2302778 62           | OU4-PR-02-13        |              |                |
|                      | 183/15 00           | 2302731 50           |                     |              |                |
|                      | 103413.09           | 2302731.39           | OU4-FR-02-14        |              |                |
| OU4-PR-02            | 103030.29           | 2302037.32           | 004-PR-02-15        |              | OU4-PR-02(0-1) |
|                      | 183388.16           | 2302766.86           | 004-PR-02-16        |              | · ,            |
|                      | 183509.36           | 2302531.71           | OU4-PR-02-17        |              |                |
|                      | 183307.36           | 2302719.83           | OU4-PR-02-18        |              |                |
|                      | 183428.56           | 2302625.77           | OU4-PR-02-19        |              |                |
|                      | 183347.76           | 2302508.19           | OU4-PR-02-20        |              |                |
|                      | 183468.96           | 2302696.31           | OU4-PR-02-21        |              |                |
|                      | 183365.71           | 2302555.22           | OU4-PR-02-22        |              |                |
|                      | 183486.91           | 2302743.34           | OU4-PR-02-23        |              |                |
|                      | 183284 91           | 2302649 28           | OU4-PR-02-24        |              |                |
|                      | 183325 31           | 2302666 02           | OU4_PR_02_25        |              |                |
|                      | 1834/6 51           | 2302000.92           | OUM_PP 02 20        |              |                |
|                      | 103440.31           | 2002012.00           |                     |              |                |
|                      | 1033/9.10           | 2302/13.93           |                     |              |                |
|                      | 183500.38           | 2302619.89           | 004-PR-02-28        |              |                |
|                      | 183419.58           | 2302502.31           | OU4-PR-02-29        |              |                |
|                      | 183540.78           | 2302690.43           | OU4-PR-02-30        |              |                |

| Table 4. 004 Surface | e Soli Sampling Loc | cations for the Proc | cess Area and Pond A | rea          |                |
|----------------------|---------------------|----------------------|----------------------|--------------|----------------|
|                      |                     |                      | ISM Increment        | Discrete VOC | Composited ISM |
| Exposure Area        | Northing (ft)       | Easting (ft)         | ID                   | Sample ID    | Sample ID      |
|                      | 183278.87           | 2302481.93           | OU4-PR-03-01         |              |                |
|                      | 182880.86           | 2302422.23           | OU4-PR-03-02         |              |                |
|                      | 183088.52           | 2302452.08           | OU4-PR-03-03         |              |                |
|                      | 183140.43           | 2302463.27           | OU4-PR-03-04         |              |                |
|                      | 183209.65           | 2302493.12           | OU4-PR-03-05         |              |                |
|                      | 182950.08           | 2302433.42           | OU4-PR-03-06         |              |                |
|                      | 183001.99           | 2302478.20           | OU4-PR-03-07         |              |                |
|                      | 183025.07           | 2302508.05           | OU4-PR-03-08         |              |                |
|                      | 183180.81           | 2302448.35           | OU4-PR-03-09         |              |                |
|                      | 183232.72           | 2302470.74           | OU4-PR-03-10         |              |                |
|                      | 182973.15           | 2302411.03           | OU4-PR-03-11         |              |                |
|                      | 183128.89           | 2302530.44           | OU4-PR-03-12         |              |                |
|                      | 183042.37           | 2302440.89           | OU4-PR-03-13         |              |                |
|                      | 182938 54           | 2302366 26           | OU4-PR-03-14         |              |                |
|                      | 183094.28           | 2302485.66           | OU4-PR-03-15         |              |                |
| OU4-PR-03            | 183301 94           | 2302515 51           | OU4-PR-03-16         |              | OU4-PR-03(0-1) |
|                      | 182903 93           | 2302455 81           | OU4-PR-03-17         |              |                |
|                      | 182955 85           | 2302461 41           | OU4-PR-03-18         |              |                |
|                      | 183267 33           | 2302521 11           | OU4-PR-03-19         |              |                |
|                      | 183163 50           | 2302491 26           | OU4-PR-03-20         |              |                |
|                      | 183186 58           | 2302476 33           | OU4-PR-03-21         |              |                |
|                      | 182927 00           | 2302416.63           | OU4-PR-03-22         |              |                |
|                      | 183134 66           | 2302446.48           | OU4-PR-03-23         |              |                |
|                      | 183290 41           | 2302565.89           | OU4-PR-03-24         |              |                |
|                      | 183048 14           | 2302468 87           | OU4-PR-03-25         |              |                |
|                      | 183255.80           | 2302400.07           | OU4-PR-03-26         |              |                |
|                      | 182006 22           | 2302430.72           | OU4-PR-03-27         |              |                |
|                      | 183065 44           | 2302439.02           |                      |              |                |
|                      | 183221 10           | 2302424.09           | OU4-FIX-03-20        |              |                |
|                      | 182061 61           | 2302343.30           | OU4-PR-03-30         |              |                |
|                      | 183000.46           | 2302508.29           | OU4-PR-04-01         |              |                |
|                      | 182905 26           | 2302519.88           | OU4-PR-04-02         |              |                |
|                      | 182857.66           | 2302576.83           | OU4-PR-04-02         |              |                |
|                      | 183048.07           | 2302520.05           | OU4-PR-04-03         |              |                |
|                      | 182869 56           | 2302547 70           | OU4-PR-04-05         |              |                |
|                      | 182064 76           | 2302554 65           | OU4-PR-04-06         |              |                |
|                      | 183012 36           | 2302556 07           | OU4-PR-04-00         |              |                |
|                      | 183107.57           | 2302563 02           |                      |              |                |
|                      | 183155 17           | 2302566 24           |                      |              |                |
|                      | 182803 36           | 2302500.24           |                      |              |                |
|                      | 102093.30           | 2302502.40           |                      |              |                |
|                      | 183226 57           | 2302504.70           |                      |              |                |
|                      | 103220.37           | 2302594.05           |                      |              |                |
|                      | 103170.97           | 2302001.01           | OU4-FR-04-13         |              |                |
|                      | 102940.90           | 2302003.33           | OU4-PR-04-14         |              |                |
| OU4-PR-04            | 103030.10           | 2302012.00           | OU4-PR-04-15         |              | OU4-PR-04(0-1) |
|                      | 103009.72           | 2302019.33           | 004-PR-04-10         |              |                |
|                      | 103137.32           | 2302021.07           | 004-PR-04-17         |              |                |
|                      | 103232.32           | 2302028.82           | 004-PR-04-18         |              |                |
|                      | 182831.71           | 2302031.14           | 004-PR-04-19         |              |                |
|                      | 182946.91           | 2302638.10           | 004-PR-04-20         |              |                |
|                      | 182994.51           | 2302640.41           | 004-PK-04-21         |              |                |
|                      | 183161.12           | 2302656.64           | 004-PR-04-22         |              |                |
|                      | 182924.29           | 2302542.50           | 004-PR-04-23         |              |                |
|                      | 183065.92           | 2302668.23           | 004-PR-04-24         |              |                |
|                      | 183018.31           | 2302675.18           | 004-PR-04-25         |              |                |
|                      | 183208.72           | 2302677.50           | 004-PR-04-26         |              |                |
|                      | 182946.70           | 2302514.89           | 004-PR-04-27         |              |                |
|                      | 183125.42           | 2302703.00           | 004-PR-04-28         |              |                |
|                      | 183173.02           | 2302705.32           | 004-PR-04-29         |              |                |
|                      | 183244.42           | 2302733.13           | OU4-PR-04-30         |              |                |

| Table 4. 004 Surface | Soil Sampling Loc | cations for the Proc                                                   | ess Area and Pond            | Area          |                |
|----------------------|-------------------|------------------------------------------------------------------------|------------------------------|---------------|----------------|
|                      |                   |                                                                        | ISM Increment                | Discrete VOC  | Composited ISM |
| Exposure Area        | Northing (ft)     | Easting (ft)                                                           | ID                           | Sample ID     | Sample ID      |
|                      | 182627 17         | 2302266 30                                                             | OLI4-PO-01-01                | •             | •              |
|                      | 182692.82         | 2302277 96                                                             | OU4-PO-01-02                 |               |                |
|                      | 182725.65         | 2302205 46                                                             | OLIA-PO-01-03                |               |                |
|                      | 18277/ 80         | 2302233.40                                                             | OU4-PO-01-03                 |               |                |
|                      | 1828/0.55         | 2302372.55                                                             | OU4-PO-01-04                 |               |                |
|                      | 1826/3 58         | 2302324.02                                                             | OU4-PO-01-05                 |               |                |
|                      | 182873 38         | 2302330.20                                                             | OU4-PO-01-07                 | OU4-PO-01-00  |                |
|                      | 182835.00         | 2302360 02                                                             |                              | 004-1 0-01-07 |                |
|                      | 182750.27         | 2302309.02                                                             |                              |               |                |
|                      | 182618.06         | 2302303.44                                                             |                              |               |                |
|                      | 182717 44         | 2302371.27                                                             |                              |               |                |
|                      | 182668 44         | 2302302.93                                                             |                              | 004-10-01-11  |                |
|                      | 182700.44         | 2302393.03                                                             |                              |               |                |
|                      | 102799.02         | 2302412.09                                                             |                              |               |                |
|                      | 182701 03         | 2302429.39                                                             | OU4-PO-01-14                 |               |                |
| OU4-PO-01            | 182737.06         | 2302453.42                                                             |                              |               | OU4-PO-01(0-1) |
|                      | 182630 /8         | 2302452.91                                                             |                              |               |                |
|                      | 182803.40         | 2302450.74                                                             |                              |               |                |
|                      | 102003.02         | 2302404.37                                                             |                              |               |                |
|                      | 102000.00         | 2302470.24                                                             | OU4-PO-01-19                 |               |                |
|                      | 102030.43         | 2302402.07                                                             | OU4-PO-01-20                 |               |                |
|                      | 102000.72         | 2302303.40                                                             | OU4-PO-01-21                 |               |                |
|                      | 102/04.00         | 2302322.09                                                             | OU4-PO-01-22                 | 004-P0-01-22  |                |
|                      | 102090.20         | 2302520.72                                                             | OU4-PO-01-23                 |               |                |
|                      | 102004.10         | 2302340.22                                                             | 004-P0-01-24                 |               |                |
|                      | 102/29.70         | 2302337.88                                                             | 004-P0-01-25                 |               |                |
|                      | 102020.24         | 2302309.34                                                             | OU4-PO-01-20                 |               |                |
|                      | 102/02.00         | 2302575.38                                                             | 004-P0-01-27                 |               |                |
|                      | 102000.01         | 102000.31 2302392.07 004-P0-01-20<br>102004.00 2302500.70 004-P0-01-20 |                              |               |                |
|                      | 182014.80         | 2302598.70                                                             | 004-P0-01-29                 | 004-P0-01-29  |                |
|                      | 182382.03         | 2302010.20                                                             | OU4-PO-01-30                 |               |                |
|                      | 102731.00         | 2302033.43                                                             | 004-P0-02-01                 |               |                |
|                      | 102021.90         | 2302759.00                                                             |                              |               |                |
|                      | 102047.91         | 2302090.02                                                             |                              |               |                |
|                      | 102009.09         | 2302744.01                                                             |                              |               |                |
|                      | 102010.01         | 2302000.02                                                             | 004-P0-02-05                 | 004-P0-02-05  |                |
|                      | 102019.93         | 2302049.23                                                             |                              |               |                |
|                      | 102/40.00         | 2302773.00                                                             |                              |               |                |
|                      | 102000.90         | 2302712.41                                                             |                              |               |                |
|                      | 102077.90         | 23027 13.90                                                            |                              |               |                |
|                      | 102703.00         | 2302030.71                                                             |                              |               |                |
|                      | 102004.17         | 2302743.49                                                             |                              |               |                |
|                      | 102710.10         | 2302002.30                                                             | 004-P0-02-12                 | 004-P0-02-12  |                |
|                      | 102/02.07         | 2302729.09                                                             | 004-P0-02-13                 |               |                |
|                      | 102042.19         | 2302000.31                                                             | 004-P0-02-14<br>004 PO 02 15 |               |                |
| OU4-PO-02            | 102000.12         | 2302792.00                                                             | 004-P0-02-15                 |               | OU4-PO-02(0-1) |
|                      | 182794.05         | 2302034.92                                                             | 004-P0-02-16                 |               |                |
|                      | 1024/2.24         | 2302701.28                                                             |                              |               |                |
|                      | 102090.10         | 2302090.10                                                             |                              |               |                |
|                      | 182040.14         | 2302721.79                                                             | 004-P0-02-19                 |               |                |
|                      | 182766.06         | 2302658.61                                                             | 004-P0-02-20                 |               |                |
|                      | 102000.19         | 2302184.98                                                             | 004-P0-02-21                 |               |                |
|                      | 102002.11         | 2302627.02                                                             | 004-P0-02-22                 |               |                |
|                      | 102012.15         | 2302816.57                                                             | 004-P0-02-23                 |               |                |
|                      | 102/38.08         | 2302611.22                                                             | 004-P0-02-24                 | 004-P0-02-24  |                |
|                      | 102528.20         | 2302/37.59                                                             | 004-P0-02-25                 | 004-P0-02-25  |                |
|                      | 182054.13         | 2302674.41                                                             | 004-P0-02-26                 |               |                |
|                      | 1825/0.18         | 2302642.81                                                             | 004-P0-02-27                 |               |                |
|                      | 102096.10         | 2302769.18                                                             | 004-P0-02-28                 |               |                |
|                      | 182/14./6         | 2302717.84                                                             | 004-P0-02-29                 |               |                |
|                      | 182630.81         | 2302781.03                                                             | 004-P0-02-30                 | 004-P0-02-30  |                |

#### Discrete VOC **ISM Increment** Composited ISM Exposure Area Northing (ft) ID Sample ID Sample ID Easting (ft) 182684.04 2302999.53 OU4-PO-03-01 182843.63 2302904.17 OU4-PO-03-02 183003.22 2303094.90 OU4-PO-03-03 182754.97 2302975.69 OU4-PO-03-04 182808.17 2302832.64 OU4-PO-03-05 OU4-PO-03-06 182967.75 2303023.37 182701.77 2302928.01 OU4-PO-03-07 182772.70 2302868.40 OU4-PO-03-08 182932.29 2303059.14 OU4-PO-03-09 182666.31 2302820.72 OU4-PO-03-10 182825.90 2303011.45 OU4-PO-03-11 183038.68 2302987.61 OU4-PO-03-12 182743.15 2303082.98 OU4-PO-03-13 182796.34 2302939.93 OU4-PO-03-14 OU4-PO-03-14 182849.54 2302948.87 OU4-PO-03-15 OU4-PO-03 OU4-PO-03(0-1) 182760.88 2302805.82 OU4-PO-03-16 OU4-PO-03-16 2302996.55 OU4-PO-03-17 182920.47 OU4-PO-03-17 182654.49 2302901.19 OU4-PO-03-18 OU4-PO-03-19 182814.08 2303091.92 OU4-PO-03-19 182707.68 2302972.71 OU4-PO-03-20 182607.50 2302859.71 OU4-PO-03-21 182778.61 2303020.39 OU4-PO-03-22 182725.42 2302865.42 OU4-PO-03-23 182885.00 2303056.16 OU4-PO-03-24 182728.04 2302913.11 OU4-PO-03-25 OU4-PO-03-26 182781.24 2302984.63 182994.02 2303032.32 OU4-PO-03-27 182745.78 2303127.68 OU4-PO-03-28 182639.38 2302954.83 OU4-PO-03-29 OU4-PO-03-29 OU4-PO-03-30 182798.97 2302859.46 183004.01 2303259.52 OU4-PO-04-01 183056.43 2303232.57 OU4-PO-04-02 182859.85 2303124.76 OU4-PO-04-03 OU4-PO-04-04 182977.80 2303340.39 183095.74 2303070.85 OU4-PO-04-05 OU4-PO-04-05 182899.17 2303286.48 OU4-PO-04-06 183017.11 2303178.66 OU4-PO-04-07 OU4-PO-04-07 182916.64 2303219.09 OU4-PO-04-08 183034.59 2303111.28 OU4-PO-04-09 183105.66 2303120.08 OU4-PO-04-10 182877.33 2303165.19 OU4-PO-04-11 OU4-PO-04-12 182995.27 2303380.82 OU4-PO-04-13 183113.21 2303030.42 182811.80 2303246.05 OU4-PO-04-14 182929.75 2303138.23 OU4-PO-04-15 OU4-PO-04-15 OU4-PO-04 OU4-PO-04(0-1) 183047.69 2303353.86 OU4-PO-04-16 OU4-PO-04-16 182969.06 2303299.96 OU4-PO-04-17 183087.00 2303192.14 OU4-PO-04-18 182942.85 2303305.01 OU4-PO-04-19 183060.80 2303035.47 OU4-PO-04-20 OU4-PO-04-21 182864.22 2303251.10 182982.17 2303143.29 OU4-PO-04-22 183021.48 2303224.15 OU4-PO-04-23 183038.95 2303278.06 OU4-PO-04-24 182842.38 2303170.24 OU4-PO-04-25 182960.33 2303385.87 OU4-PO-04-26 183078.27 2302995.04 OU4-PO-04-27 182881.70 2303210.67 OU4-PO-04-28 183070.22 2303145.20 OU4-PO-04-29 OU4-PO-04-30 182934.12 2303264.58 OU4-PO-04-30

|               |               |              | ISM Increment | Discrete VOC | Composited ISM  |
|---------------|---------------|--------------|---------------|--------------|-----------------|
| Exposure Area | Northing (ft) | Easting (ft) | ID            | Sample ID    | Sample ID       |
|               | 182556.47     | 2302514.35   | OU4-PO-05-01  |              |                 |
|               | 182448.04     | 2302670.35   | OU4-PO-05-02  |              |                 |
|               | 182513.09     | 2302416.84   | OU4-PO-05-03  |              |                 |
|               | 182469.72     | 2302494.85   | OU4-PO-05-04  |              |                 |
|               | 182534.78     | 2302650.85   | OU4-PO-05-05  | OU4-PO-05-05 |                 |
|               | 182599.84     | 2302455.85   | OU4-PO-05-06  |              |                 |
|               | 182433.58     | 2302611.85   | OU4-PO-05-07  | OU4-PO-05-07 |                 |
|               | 182498.64     | 2302533.85   | OU4-PO-05-08  | OU4-PO-05-08 |                 |
|               | 182520.32     | 2302548.47   | OU4-PO-05-09  |              |                 |
|               | 182585.38     | 2302470.47   | OU4-PO-05-10  | OU4-PO-05-10 |                 |
|               | 182476.95     | 2302626.47   | OU4-PO-05-11  |              |                 |
|               | 182542.01     | 2302431.47   | OU4-PO-05-12  |              |                 |
|               | 182480.16     | 2302665.47   | OU4-PO-05-13  |              |                 |
|               | 182545.22     | 2302411.97   | OU4-PO-05-14  | OU4-PO-05-14 |                 |
| OU4-PO-05     | 182436.79     | 2302567.97   | OU4-PO-05-15  |              | OLI4-PO-05(0-1) |
| 0041000       | 182501.85     | 2302489.97   | OU4-PO-05-16  |              |                 |
|               | 182523.54     | 2302606.97   | OU4-PO-05-17  |              |                 |
|               | 182552.45     | 2302558.22   | OU4-PO-05-18  |              |                 |
|               | 182509.08     | 2302636.22   | OU4-PO-05-19  |              |                 |
|               | 182574.14     | 2302441.22   | OU4-PO-05-20  |              |                 |
|               | 182465.71     | 2302597.22   | OU4-PO-05-21  |              |                 |
|               | 182530.76     | 2302519.22   | OU4-PO-05-22  |              |                 |
|               | 182494.62     | 2302577.72   | OU4-PO-05-23  |              |                 |
|               | 182559.68     | 2302499.72   | OU4-PO-05-24  |              |                 |
|               | 182451.25     | 2302655.72   | OU4-PO-05-25  |              |                 |
|               | 182516.31     | 2302460.72   | OU4-PO-05-26  |              |                 |
|               | 182472.93     | 2302538.72   | OU4-PO-05-27  |              |                 |
|               | 182482.57     | 2302468.03   | OU4-PO-05-28  |              |                 |
|               | 182547.63     | 2302624.03   | OU4-PO-05-29  |              |                 |
|               | 182504.26     | 2302585.03   | OU4-PO-05-30  |              |                 |

Notes:

bgs = below ground surface

ISM = incremental sampling methodology

PO = pond area

PR = process area

VOC = volatile organic compound

Coordinates are presented in North Carolina State Plane, North American Datum 1983.

#### Table 5. OU2 Proposed Laboratory Methods and Sample Summary

| Operable Unit (OU) and<br>Subarea | Sample Type | Depth Increment, Description | Analytes       | Method | No.<br>Samples | Field<br>Duplicates <sup>a</sup> | Field<br>Triplicates <sup>a</sup> | Equipment<br>Blanks <sup>b</sup> | Field Blanks<br>(est.) <sup>c</sup> | MS | MSD | Total No.<br>Samples |
|-----------------------------------|-------------|------------------------------|----------------|--------|----------------|----------------------------------|-----------------------------------|----------------------------------|-------------------------------------|----|-----|----------------------|
| OU2 Discrete                      | Disoroto    | 1-2 ft bgs                   | Dioxins/Furans | 8290A  | 33             | 4                                | na                                | 2                                | 1                                   | 2  | 2   | 44                   |
|                                   | Discrete    | 2-3 ft bgs                   | Archive        | na     | 33             | 4                                | na                                | 2                                | 1                                   | 2  | 2   | 44                   |
| Notes:                            |             |                              |                |        |                |                                  |                                   |                                  |                                     |    |     |                      |

bgs = below ground surface MSD = MS = matrix spike na = nc

MSD = matrix spike duplicate na = not applicable

<sup>a</sup> Field duplicates/triplicates will be collected at a frequency of 1 per 10 samples for discrete and composite samples.

<sup>b</sup> Equipment blanks will be collected at a frequency of 1 per 20 samples per piece of equipment.

<sup>c</sup> Field blanks will be collected at the rate of one per week.

#### Table 6. OU4 Proposed Laboratory Methods and Sample Summary

| Operable Unit (OU) and    |                   |                                                                  |                         |           | No.     | Field                   | Field                    | Equipment           | Field Blanks        |                          |                 |                  | Total No. |
|---------------------------|-------------------|------------------------------------------------------------------|-------------------------|-----------|---------|-------------------------|--------------------------|---------------------|---------------------|--------------------------|-----------------|------------------|-----------|
| Subarea                   | Sample Type       | Depth Increment, Description                                     | Analytes                | Method    | Samples | Duplicates <sup>a</sup> | Triplicates <sup>a</sup> | Blanks <sup>b</sup> | (est.) <sup>c</sup> | Trip Blanks <sup>d</sup> | MS <sup>e</sup> | MSD <sup>e</sup> | Samples   |
|                           |                   | · · · · · · · · · · · · · · · · · · ·                            | Dioxins/Furans          | 8290A     | 4       | 1                       | na                       | 1                   | 1                   | na                       | 1               | 1                | 9         |
|                           |                   | 0.4.4.4.                                                         | PAHs/SVOCs <sup>f</sup> | 8270D     | 4       | 1                       | na                       | 1                   | 1                   | na                       | 1               | 1                | 9         |
| OU4 Festern Undeveloped   | 5-point Composite | 0-1 It bgs; one composite                                        | PCP                     | 8270D SIM | 4       | 1                       | na                       | 1                   | 1                   | na                       | 1               | 1                | 9         |
| Area Boundary             |                   | from cach exposure area                                          | Arsenic                 | 6010D     | 4       | 1                       | na                       | 1                   | 1                   | na                       | 1               | 1                | 9         |
| Allou Boundary            |                   |                                                                  | Aldrin                  | 8081B     | 4       | 1                       | na                       | 1                   | 1                   | na                       | 1               | 1                | 9         |
| -                         | Discrete          | 0-1 ft bgs; one sample from<br>each exposure area                | VOCs <sup>g</sup>       | 8260C     | 20      | 2                       | na                       | na                  | 1                   | 2                        | 1               | 1                | 27        |
| OU4 Former Untreated Wood |                   | 0-1 ft bas: one composite                                        | Dioxins/Furans          | 8290A     | 25      | 3                       | na                       | 2                   | 1                   | na                       | 1               | 1                | 33        |
| Storage Area              | 5-point Composite | from each exposure area                                          | PAHs                    | 8270D     | 25      | 3                       | na                       | 2                   | 1                   | na                       | 1               | 1                | 33        |
|                           |                   | •                                                                | PCP                     | 8270D SIM | 25      | 3                       | na                       | 2                   | 1                   | na                       | 1               | 1                | 33        |
|                           | ISM               | 0-1 ft bgs; 30 increments<br>collected for each exposure<br>area | Dioxins/Furans          | 8290A     | 4       | na                      | 0                        | 1                   | 1                   | na                       | 0               | 0                | 6         |
| OU4 Process Area          |                   |                                                                  | PAHs/SVOC <sup>h</sup>  | 8270D     | 4       | na                      | 0                        | 1                   | 1                   | na                       | 0               | 0                | 6         |
|                           |                   |                                                                  | PCP                     | 8270D SIM | 4       | na                      | 0                        | 1                   | 1                   | na                       | 0               | 0                | 6         |
|                           |                   | 0-1 ft bgs; 30 increments                                        | Dioxins/Furans          | 8290A     | 5       | na                      | 1                        | 1                   | 1                   | na                       | 1               | 1                | 10        |
|                           |                   |                                                                  | PAHs/SVOCs <sup>f</sup> | 8270D     | 5       | na                      | 1                        | 1                   | 1                   | na                       | 1               | 1                | 10        |
|                           | ISM               | collected for each exposure                                      | PCP                     | 8270D SIM | 5       | na                      | 1                        | 1                   | 1                   | na                       | 1               | 1                | 10        |
| OU4 Pond Area             |                   | area                                                             | Arsenic                 | 6010D     | 5       | na                      | 1                        | 1                   | 1                   | na                       | 1               | 1                | 10        |
|                           |                   |                                                                  | Aldrin                  | 8081B     | 5       | na                      | 1                        | 1                   | 1                   | na                       | 1               | 1                | 10        |
|                           | Discrete          | 0-1 ft bgs; 5 samples from<br>each exposure area                 | VOCs <sup>g</sup>       | 8260C     | 25      | 3                       | na                       | na                  | 1                   | 2                        | 2               | 2                | 35        |
|                           |                   |                                                                  | Dioxins/Furans          | 8290A     | 19      | 2                       | na                       | 1                   | 1                   | na                       | 1               | 1                | 25        |
|                           |                   |                                                                  | PAHs/SVOCs <sup>f</sup> | 8270D     | 19      | 2                       | na                       | 1                   | 1                   | na                       | 1               | 1                | 25        |
| OU4 Area within the       | Discrete          | 0.1.66 have                                                      | PCP                     | 8270D SIM | 19      | 2                       | na                       | 1                   | 1                   | na                       | 1               | 1                | 25        |
| Floodplain                |                   | 0-1 IL bgs                                                       | Arsenic                 | 6010D     | 19      | 2                       | na                       | 1                   | 1                   | na                       | 1               | 1                | 25        |
|                           |                   |                                                                  | Aldrin                  | 8081B     | 19      | 2                       | na                       | 1                   | 1                   | na                       | 1               | 1                | 25        |
|                           |                   |                                                                  | VOCs <sup>g</sup>       | 8260C     | 19      | 2                       | na                       | 1                   | 1                   | na                       | 1               | 1                | 25        |

Notes:

bgs = below ground surface

ISM = incremental sampling methodology

MS = matrix spike

MSD = matrix spike duplicate na = not applicable

PAH = polycyclic aromatic hydrocarbon

PCP = pentachlorophenol SVOC = semivolatile organic compound VOC = volatile organic compound

<sup>a</sup> Field duplicates will be collected at a frequency of 1 per 10 samples for discrete and composite samples. Field triplicates will be collected at a frequency of 1 per 10 samples for ISM samples.

<sup>b</sup> Equipment blanks will be collected at a frequency of 1 per 20 samples per piece of equipment. VOC samples will be collected using dedicated sample equipment; therefore, no equipment blanks will be collected.

<sup>c</sup> Field blanks will be collected at the rate of one per week.

<sup>d</sup> Trip blanks will be analyzed for VOC samples at a rate of 1 per cooler of samples.

<sup>e</sup>MS/MSDs will be analyzed at a frequency of 1 per 20 samples per sample type and analyte.

<sup>f</sup>The following SVOCs will be reported: 1,1-biphenyl, carbazole, and dibenzofuran.

<sup>g</sup> The following VOCs will be reported: benzene, ethylbenzene, and total xylenes.

<sup>h</sup> The following SVOC will be reported for Process Area samples: dibenzofuran.

|                                                   |            |           |       | Lab Method      | Lab Reporting |
|---------------------------------------------------|------------|-----------|-------|-----------------|---------------|
| Parameter                                         | CAS Number | Method    | Units | Detection Limit | Limit         |
| PAHs                                              |            |           |       |                 |               |
| 1-Methylnaphthalene                               | 90-12-0    | 8270D     | mg/kg | 0.017           | 0.17          |
| 2-Methylnaphthalene                               | 91-57-6    | 8270D     | mg/kg | 0.017           | 0.17          |
| Acenaphthene                                      | 83-32-9    | 8270D     | mg/kg | 0.018           | 0.17          |
| Acenaphthylene <sup>a</sup>                       | 208-96-8   | 8270D     | mg/kg | 0.017           | 0.17          |
| Anthracene                                        | 120-12-7   | 8270D     | mg/kg | 0.019           | 0.17          |
| Benzo[ <i>a</i> ]anthracene                       | 56-55-3    | 8270D     | mg/kg | 0.017           | 0.17          |
| Benzo[ <i>a</i> ]pyrene                           | 50-32-8    | 8270D     | mg/kg | 0.02            | 0.17          |
| Benzo[b]fluoranthene                              | 205-99-2   | 8270D     | mg/kg | 0.018           | 0.17          |
| Benzo[ <i>g,h,i</i> ]perylene <sup>a</sup>        | 191-24-2   | 8270D     | mg/kg | 0.017           | 0.17          |
| Benzo[k]fluoranthene                              | 207-08-9   | 8270D     | mg/kg | 0.022           | 0.17          |
| Chrysene                                          | 218-01-9   | 8270D     | mg/kg | 0.017           | 0.17          |
| Dibenz[ <i>a</i> , <i>h</i> ]anthracene           | 53-70-3    | 8270D     | mg/kg | 0.021           | 0.17          |
| Fluoranthene                                      | 206-44-0   | 8270D     | mg/kg | 0.017           | 0.17          |
| Fluorene                                          | 86-73-7    | 8270D     | mg/kg | 0.018           | 0.17          |
| Indeno[1,2,3- <i>cd</i> ]pyrene                   | 193-39-5   | 8270D     | mg/kg | 0.02            | 0.17          |
| Naphthalene                                       | 91-20-3    | 8270D     | mg/kg | 0.017           | 0.17          |
| Phenanthrene <sup>a</sup>                         | 85-01-8    | 8270D     | mg/kg | 0.017           | 0.17          |
| Pyrene                                            | 129-00-0   | 8270D     | mg/kg | 0.019           | 0.17          |
| Pentachlorophenol                                 | 87-86-5    | 8270D SIM | mg/kg | 0.017           | 0.13          |
| Dioxins                                           |            |           |       |                 |               |
| 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)        | 1746-01-6  | 8290A     | pg/g  | 0.5             | 0.5           |
| 1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)     | 40321-76-4 | 8290A     | pg/g  | 1.25            | 2.5           |
| 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)    | 39227-28-6 | 8290A     | pg/g  | 1.25            | 2.5           |
| 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)    | 57653-85-7 | 8290A     | pg/g  | 2.5             | 2.5           |
| 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)    | 19408-74-3 | 8290A     | pg/g  | 1.25            | 2.5           |
| 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) | 35822-46-9 | 8290A     | pg/g  | 1.25            | 2.5           |
| 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD) | 3268-87-9  | 8290A     | pg/g  | 5               | 5             |
| Furans                                            |            |           |       |                 |               |
| 2,3,7,8-Tetrachlorodibenzofuran (TCDF)            | 51207-31-9 | 8290A     | pg/g  | 0.25            | 0.5           |
| 1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)         | 57117-41-6 | 8290A     | pg/g  | 1.3             | 2.5           |
| 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)         | 57117-31-4 | 8290A     | pg/g  | 2.5             | 2.5           |

Table 7. Soil Target Parameters, Analytical Methods, and Project Minimum Reporting Limits

|                                               |            |         |       | Lab Method      | Lab Reporting |
|-----------------------------------------------|------------|---------|-------|-----------------|---------------|
| Parameter                                     | CAS Number | Method  | Units | Detection Limit | Limit         |
| 1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)    | 70648-26-9 | 8290A   | pg/g  | 1.3             | 2.5           |
| 1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)    | 57117-44-9 | 8290A   | pg/g  | 1.3             | 2.5           |
| 2,3,4,6,7,8-Hexchlorodibenzofuran (HxCDF)     | 60851-34-5 | 8290A   | pg/g  | 1.3             | 2.5           |
| 1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)    | 72918-21-9 | 8290A   | pg/g  | 1.3             | 2.5           |
| 1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF) | 67562-39-4 | 8290A   | pg/g  | 1.3             | 2.5           |
| 1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF) | 55673-89-7 | 8290A   | pg/g  | 1.3             | 2.5           |
| 1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF) | 39001-02-0 | 8290A   | pg/g  | 2.5             | 5             |
| SVOCs                                         |            |         |       |                 |               |
| 1,1-Biphenyl                                  | 92-52-4    | 8270 D  | µg/kg | 17              | 170           |
| Carbazole                                     | 86-74-8    | 8270 D  | µg/kg | 23              | 170           |
| Dibenzofuran                                  | 132-64-9   | 8270 D  | µg/kg | 17              | 170           |
| VOCs                                          |            |         |       |                 |               |
| Benzene                                       | 71-43-2    | 8260B   | µg/kg | 1.2             | 5             |
| Ethylbenzene                                  | 100-41-4   | 8260B   | µg/kg | 1               | 5             |
| Total Xylenes                                 | 1330-20-7  | 8260B   | µg/kg | 2.1             | 15            |
| Inorganics                                    |            |         |       |                 |               |
| Arsenic                                       | 7440-38-2  | 6010 SO | mg/kg | 0.1             | 0.5           |
| Pesticides                                    |            |         |       |                 |               |
| Aldrin                                        | 309-00-2   | 8081B   | μg/kg | 0.52            | 1.7           |
| Notes:                                        |            |         |       |                 |               |

Table 7. Soil Target Parameters, Analytical Methods, and Project Minimum Reporting Limits

BaP-TEQ = benzo[*a*]pyrene toxicity equivalence

CAS = Chemical Abstracts Service

PAH = polycyclic aromatic hydrocarbon

SVOC = semivolatile organic compound

TCDD TEQ = 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity equivalence

VOC = volatile organic compound

<sup>a</sup> Pyrene used as a surrogate.